Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Xác định góc giữa hai đường thẳng chéo nhau

Bài viết trình bày phương pháp xác định và tính góc giữa hai đường thẳng chéo nhau trong không gian bằng cách sử dụng hình học không gian cổ điển, đây là một nội dung thường gặp trong chương trình Hình học 11 chương 3: Quan hệ vuông góc, kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu hình học không gian được chia sẻ trên TOANMATH.com.

Bài toán: Cho hai đường thẳng \(a\) và \(b\) chéo nhau, xác định góc giữa \(2\) đường thẳng \(a\) và \(b.\)

Để xác định góc giữa hai đường thẳng \(a\) và \(b\) chéo nhau, ta sử dụng các cách sau:

Cách 1: Chọn hai đường thẳng cắt nhau \(a’\) và \(b’\) lần lượt song song với \(a\) và \(b\). Khi đó \((\widehat {a,b}) = (\widehat {a’,b’})\).

xac-dinh-goc-giua-hai-duong-thang-cheo-nhau-1

Cách 2: Chọn một điểm \(A\) bất kỳ thuộc \(a\), rồi từ đó kẻ một đường thẳng \(b’\) qua \(A\) và song song với \(b\). Khi đó \((\widehat {a,b}) = (\widehat {a,b’})\).

xac-dinh-goc-giua-hai-duong-thang-cheo-nhau-2

Ví dụ 1: Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(SA = a\sqrt 3 ,SA \bot BC\). Tính góc giữa hai đường thẳng \(SD\) và \(BC\)?

xac-dinh-goc-giua-hai-duong-thang-cheo-nhau-3
Ta có: \(BC//AD.\)
Do đó \((SD,BC) = (SD,AD) = \widehat {SDA}.\)
Vì \(\left. \begin{array}{l}
BC||AD\\
SA \bot BC
\end{array} \right\}\) \( \Rightarrow SA \bot AD \Rightarrow \widehat {SAD} = {90^0}.\)
Xét tam giác \(ΔSAD\) vuông tại \(A\) ta có:
\(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \) \( \Rightarrow \widehat {SDA} = {60^0}.\)
Vậy góc giữa hai đường thẳng \(SD\) và \(BC\) bằng \(60\) độ.

Ví dụ 2: Cho tứ diện \(ABCD\) có \(AB = CD = 2a\). Gọi \(M, N\) lần lượt là trung điểm của \(BC\) và \(AD\), \(MN = a\sqrt 3 \). Tính góc giữa hai đường thẳng \(AB\) và \(CD\)?

xac-dinh-goc-giua-hai-duong-thang-cheo-nhau-4

Gọi \(I\) là trung điểm của \(BD.\)
Ta có: \(\left. \begin{array}{l}
IN//AB\\
IM//CD
\end{array} \right\}\) \( \Rightarrow (AB,CD) = (IM,IN).\)
Xét tam giác \(IMN\) có:
\(IM = IN = a,MN = a\sqrt 3 .\)
Do đó \(\cos \widehat {MIN} = \frac{{2{a^2} – 3{a^2}}}{{2{a^2}}} = – \frac{1}{2}\) \( \Rightarrow \widehat {MIN} = {120^0}.\)
Vậy \((\widehat {AB,CD}) = {180^0} – {120^0} = {60^0}\).

Ví dụ 3: Cho hình lăng trụ \(ABC.A’B’C’\) có độ dài cạnh bên bằng \(2a\), đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a,AC = a\sqrt 3\). Hình chiếu vuông góc của \(A’\) lên \(mp(ABC)\) là trung điểm của \(BC\). Tính \(cosin\) của góc giữa hai đường thẳng \(AA’\) và \(B’C’\)?

xac-dinh-goc-giua-hai-duong-thang-cheo-nhau-5
Gọi \(H\) là trung điểm của \(BC.\)
Ta có: \(\left. \begin{array}{l}
AA’//BB’\\
B’C’//BH
\end{array} \right\}\) \( \Rightarrow (AA’,B’C’) = (BB’,BH).\)
Hay \(\cos (AA’,B’C’) = \cos (BB’,BH)\) \( = \left| {\cos \widehat {HBB’}} \right|.\)
Xét tam giác \(A’B’H\) có:
\(\widehat {A’} = {90^0},A’B’ = a.\)
\(A’H = \sqrt {AA{‘^2} – A{H^2}} \) \( = \sqrt {AA{‘^2} – {{\left( {\frac{{BC}}{2}} \right)}^2}} = a\sqrt 3 .\)
Suy ra \(HB’ = \sqrt {A'{H^2} + A’B{‘^2}} = 2a.\)
Do đó \(\cos \widehat {HBB’} = \frac{{B{H^2} + BB{‘^2} – HB{‘^2}}}{{2.BH.BB’}} = \frac{1}{4}.\)
Vậy \(\cos (AA’,B’C’) = \left| {\cos \widehat {HBB’}} \right| = \frac{1}{4}\).

Đăng nhận xét

About the Author

"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.