Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Tính tích phân bằng phương pháp phân tích

Bài viết hướng dẫn tính tích phân bằng phương pháp phân tích. Kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu nguyên hàm – tích phân và ứng dụng được đăng tải trên TOANMATH.com.

Phương pháp:
Để tính tích phân $I = \int\limits_a^b {f(x)dx} $ ta phân tích $f(x) = {k_1}{f_1}(x) + … + {k_m}{f_m}(x)$, trong đó các hàm ${f_i}(x){\rm{ }}(i = 1,2,3,…,n)$ có trong bảng nguyên hàm.

Ví dụ 1. Tính các tích phân sau:
1. $I = \int\limits_0^1 {\frac{{xdx}}{{\sqrt {3x + 1} + \sqrt {2x + 1} }}} .$
2. $J = \int\limits_2^7 {\frac{{xdx}}{{\sqrt {x + 2} + \sqrt {x – 2} }}} .$

1. Ta có: $x = (3x + 1) – (2x + 1)$ $ = (\sqrt {3x + 1} – \sqrt {2x + 1} )$$(\sqrt {3x + 1} + \sqrt {2x + 1} ).$
Nên $I = \int\limits_0^1 {(\sqrt {3x + 1} – \sqrt {2x + 1} )dx} $ $ = \left. {\left[ {\frac{2}{9}\sqrt {{{(3x + 1)}^3}} – \frac{1}{3}\sqrt {{{(2x + 1)}^3}} } \right]} \right|_0^1$ $ = \frac{{17 – 9\sqrt 3 }}{9}.$
2. Ta có $x$ $ = \frac{1}{4}(\sqrt {x + 2} + \sqrt {x – 2} )$$(\sqrt {x + 2} – \sqrt {x – 2} ).$
Nên $J = \frac{1}{4}\int\limits_2^7 {\left( {\sqrt {x + 2} – \sqrt {x – 2} } \right)dx} $ $ = \frac{{19 – 5\sqrt 5 }}{6}.$

Ví dụ 2. Tính các tích phân sau:
1. $I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\sin 2x.\sin 3x} {\rm{ }}.$
2. $J = \int\limits_0^{\frac{\pi }{4}} {{{\cos }^4}2x} dx.$

1. Ta có: $I = \frac{1}{2}\int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {(\cos x – \cos 5x)dx} $ $ = \left. {\frac{1}{2}(\sin x – \frac{1}{5}\sin 5x)} \right|_{ – \frac{\pi }{2}}^{\frac{\pi }{2}}$ $ = \frac{4}{5}.$
2. Ta có: ${\cos ^4}2x$ $ = \frac{1}{2}(1 + 2\cos 4x + {\cos ^2}4x)$ $ = \frac{1}{4}(3 + 4\cos 4x + \cos 8x).$
Nên $J = \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {(3 + 4\cos 4x + \cos 8x)dx} $ $ = \frac{1}{4}\left. {\left( {3x + \sin 4x + \frac{1}{8}\sin 8x} \right)} \right|_0^{\frac{\pi }{4}}$ $ = \frac{{3\pi }}{{16}}.$
[ads]
Ví dụ 3. Tính các tích phân sau:
1. $I = \int\limits_3^4 {\frac{{{x^2}dx}}{{{x^2} – 3x + 2}}} .$
2. $J = \int\limits_2^3 {\frac{{2x + 3}}{{{x^3} – 3x + 2}}dx} .$

1. Ta có: $\frac{{{x^2}}}{{{x^2} – 3x + 2}}$ $ = 1 + \frac{3}{2}\frac{{2x – 3}}{{{x^2} – 3x + 2}}$ $ + \frac{5}{2}\frac{1}{{{x^2} – 3x + 2}}$ $ = 1 + \frac{3}{2}\frac{{2x – 3}}{{{x^2} – 3x + 2}}$ $ + \frac{5}{2}\left( {\frac{1}{{x – 2}} – \frac{1}{{x – 1}}} \right).$
Suy ra: $I = $ $\left. {\left( {x + \frac{3}{2}ln\left| {{x^2} – 3x + 2} \right| + \frac{5}{2}\ln \left| {\frac{{x – 2}}{{x – 1}}} \right|} \right){\rm{ }}} \right|_3^4$ $ = 1 + \frac{3}{2}\ln 3 + \frac{5}{2}\ln \frac{4}{3}.$
2. Ta có: ${x^3} – 3x + 2$ $ = {(x – 1)^2}(x + 2)$
$2x + 3 = a{(x – 1)^2}$ $ + b(x + 2)(x – 1) + c(x + 2)$
$ \Leftrightarrow 2x + 3 = (a + b){x^2}$ $ + (c – 2a + b)x + a – 2b + 2c$
$ \Leftrightarrow \left\{ \begin{array}{l}
a + b = 0\\
– 2a + b + c = 2\\
a – 2b + 2c = 3
\end{array} \right.$ $ \Leftrightarrow a = – \frac{1}{9},b = \frac{1}{9},c = \frac{5}{3}.$
$J = $ $\int\limits_2^3 {\left[ { – \frac{1}{9}\frac{1}{{x + 2}} + \frac{1}{9}\frac{1}{{x – 1}} + \frac{5}{3}\frac{1}{{{{(x – 1)}^2}}}} \right]dx} $ $ = \left. {\left( {\frac{1}{9}\ln \left| {\frac{{x – 1}}{{x + 2}}} \right| – \frac{5}{{3(x – 1)}}} \right){\rm{ }}} \right|_2^3$ $ = \frac{1}{9}\ln \frac{8}{5} + \frac{5}{6}.$

Ví dụ 4. Tính các tích phân sau: $I = \int\limits_0^1 {x\left| {x – a} \right|dx} ,a > 0.$

Xét hai trường hợp:
$ \bullet $ $a \ge 1$ $ \Rightarrow I = \int\limits_0^1 {x(a – x)dx} $ $ = \frac{{3a – 2}}{6}.$
$ \bullet $ $0 < a < 1$ $ \Rightarrow I = \int\limits_0^a {x(a – x)dx} + \int\limits_a^1 {x(x – a)dx} $ $ = \frac{{2{a^3} – 3a + 2}}{6}.$





Nguồn: toanmath.com

Đăng nhận xét

About the Author

"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.