Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Tìm nguyên hàm bằng phương pháp phân tích

Bài viết hướng dẫn tìm nguyên hàm bằng phương pháp phân tích. Kiến thức và các ví dụ trong bài viết được tham khảo từ các tài liệu nguyên hàm – tích phân và ứng dụng được đăng tải trên TOANMATH.com.

Phương pháp: Để tìm nguyên hàm $\int {f(x)dx} $, ta phân tích:
$f(x) = {k_1}.{f_1}(x) + {k_2}.{f_2}(x) + … + {k_n}.{f_n}(x).$
Trong đó: ${f_1}(x), {f_2}(x), …, {f_n}(x)$ có trong bảng nguyên hàm hoặc ta dễ dàng tìm được nguyên hàm.
Khi đó: $\int {f(x)dx} = {k_1}\int {{f_1}(x)dx} $ $ + {k_2}\int {{f_2}(x)dx} + … + {k_n}\int {{f_n}(x)dx} .$

Ví dụ minh họa
Ví dụ 1. Tìm nguyên hàm:
1. $I = \int {\frac{{2{x^2} + x + 1}}{{x – 1}}dx} .$
2. $J = \int {\frac{{{x^3} – 1}}{{x + 1}}dx} .$
3. $K = \int {{{\left( {x – \frac{1}{x}} \right)}^3}dx} .$

1. Ta có: $\frac{{2{x^2} + x + 1}}{{x – 1}}$ $ = 2x + 3 + \frac{4}{{x – 1}}.$
Suy ra $I = \int {(2x + 3 + \frac{4}{{x – 1}})dx} $ $ = {x^2} + 3x + 4\ln \left| {x – 1} \right| + C.$
2. Ta có: $\frac{{{x^3} – 1}}{{x + 1}} = \frac{{{x^3} + 1 – 2}}{{x + 1}}$ $ = {x^2} – x + 1 – \frac{2}{{x + 1}}.$
Suy ra $J = \int {\left( {{x^2} – x + 1 – \frac{2}{{x + 1}}} \right)dx} $ $ = \frac{{{x^3}}}{3} – \frac{{{x^2}}}{2} + x – 2\ln \left| {x + 1} \right| + C.$
3. Ta có: ${\left( {x – \frac{1}{x}} \right)^3}$ $ = {x^3} – 3x + \frac{3}{x} – \frac{1}{{{x^3}}}.$
Suy ra $K = \int {\left( {{x^3} – 3x + \frac{3}{x} – \frac{1}{{{x^3}}}} \right)dx} $ $ = \frac{{{x^4}}}{4} – \frac{{3{x^2}}}{2} + 3\ln \left| x \right| + \frac{1}{{2{x^2}}} + C.$

Ví dụ 2. Tìm nguyên hàm:
1. $I = \int {\frac{{dx}}{{{{({x^2} – 1)}^2}}}} .$
2. $J = \int {\frac{{{x^3} + 2x + 1}}{{{x^2} + 2x + 1}}dx} .$
3. $K = \int {\frac{{2{x^2} + 1}}{{{{(x + 1)}^5}}}dx} .$

1. Ta có: $\frac{1}{{{{({x^2} – 1)}^2}}}$ $ = \frac{1}{4}\frac{{{{\left[ {(x + 1) – (x – 1)} \right]}^2}}}{{{{\left[ {(x – 1)(x + 1)} \right]}^2}}}$
$ = \frac{1}{4}\left[ {\frac{1}{{{{(x – 1)}^2}}} – \frac{2}{{(x – 1)(x + 1)}} + \frac{1}{{{{(x + 1)}^2}}}} \right]$ $ = \frac{1}{4}\left[ {\frac{1}{{{{(x – 1)}^2}}} – \frac{1}{{x – 1}} + \frac{1}{{x + 1}} + \frac{1}{{{{(x + 1)}^2}}}} \right].$
Suy ra $I = \frac{1}{4}\left[ { – \frac{1}{{x – 1}} + \ln \left| {\frac{{x + 1}}{{x – 1}}} \right| – \frac{1}{{x + 1}}} \right] + C.$
2. Ta có: ${x^3} + 2x + 1$ $ = {(x + 1)^3} – 3{(x + 1)^2}$ $ + 5(x + 1) – 2.$
Suy ra $J = \int {(x – 2 + \frac{5}{{x + 1}} – \frac{2}{{{{(x + 1)}^2}}})dx} $
$ = \frac{{{x^2}}}{2} – 2x + 5\ln \left| {x + 1} \right| + \frac{2}{{x + 1}} + C.$
3. Ta phân tích $2{x^2} + 1$ $ = 2{(x + 1)^2} – 4(x + 1) + 3.$
Suy ra:
$K = \int {\left( {\frac{2}{{{{(x + 1)}^3}}} – \frac{4}{{{{(x + 1)}^4}}} + \frac{3}{{{{(x + 1)}^5}}}} \right)dx} $
$ = – \frac{1}{{{{(x + 1)}^2}}} + \frac{4}{{3{{(x + 1)}^3}}} – \frac{3}{{4{{(x + 1)}^4}}} + C.$

Ví dụ 3. Tìm nguyên hàm:
1. $I = \int {{{({e^x} + 2{e^{ – x}})}^2}dx} .$
2. $J = \int {\frac{{{3^x} + {{4.5}^x}}}{{{7^x}}}dx} .$

1. Ta có: ${({e^x} + 2{e^{ – x}})^2}$ $ = {e^{2x}} + 4 + 4.{e^{ – 2x}}.$
Suy ra: $I = \int {({e^{2x}} + 4 + 4{e^{ – 2x}})dx} $ $ = \frac{1}{2}{e^{2x}} + 4x – 2{e^{ – 2x}} + C.$
2. $J = \int {\left( {{{\left( {\frac{3}{7}} \right)}^x} + 4.{{\left( {\frac{5}{7}} \right)}^x}} \right)dx} $ $ = \frac{1}{{\ln \frac{3}{7}}}.{\left( {\frac{3}{7}} \right)^x} + \frac{4}{{\ln \frac{5}{7}}}.{\left( {\frac{5}{7}} \right)^x} + C.$
[ads]
Ví dụ 4. Tìm nguyên hàm: $I = \int {\frac{{{{\sin }^4}x}}{{{{\cos }^2}x}}dx} .$

$I = \int {\left( {\frac{1}{{{{\cos }^2}x}} + {{\cos }^2}x – 2} \right)dx} $
$I = \tan x – 2x $ $+ \int {\frac{{dx}}{2}} + \frac{1}{4}\int {\cos 2xd\left( {2x} \right)} $ $ = \tan x – \frac{3}{2}x + \frac{1}{4}\sin 2x + C.$

Ví dụ 5. Tìm nguyên hàm:
1. $I = \int {{{\cos }^4}2xdx} .$
2. $J = \int {(\cos 3x.\cos 4x + {{\sin }^3}2x)dx} .$

1. Ta có: ${\cos ^4}2x = \frac{1}{4}{\left( {1 + \cos 4x} \right)^2}$ $ = \frac{1}{4}\left( {1 + 2\cos 4x + {{\cos }^2}4x} \right)$
$ = \frac{1}{4}\left( {1 + 2\cos 4x + \frac{{1 + \cos 8x}}{2}} \right)$ $ = \frac{1}{8}\left( {3 + 4\cos 4x + \cos 8x} \right)$
$ \Rightarrow I = \frac{1}{8}\int {(3 + 4\cos 4x + \cos 8x)dx} $ $ = \frac{1}{8}\left( {3x + \sin 4x + \frac{1}{8}\sin 8x} \right) + C.$
2. Ta có: $\cos 3x.\cos 4x = \frac{1}{2}\left[ {\cos 7x + \cos x} \right].$
${\sin ^3}2x = \frac{3}{4}\sin 2x – \frac{1}{4}\sin 6x.$
Nên suy ra: $ J = \frac{1}{{14}}\sin 7x + \frac{1}{2}\sin x$ $ – \frac{3}{8}\cos 2x + \frac{1}{{24}}\cos 6x + C.$

Ví dụ 6. Tìm nguyên hàm:
1. $I = \int {\left( {\frac{1}{{{{\ln }^2}x}} – \frac{1}{{\ln x}}} \right)dx} .$
2. $J = \int {\frac{{x{e^x} + 1}}{{{{(x + {e^x})}^2}}}dx} .$

1. Ta có: $\frac{1}{{{{\ln }^2}x}} – \frac{1}{{\ln x}} = \frac{{1 – \ln x}}{{{{\ln }^2}x}}$ $ = \frac{{x(\ln x)’ – (x)’\ln x}}{{{{\ln }^2}x}} = \left( {\frac{x}{{\ln x}}} \right)’.$
Vậy $I = \int {\left( {\frac{x}{{\ln x}}} \right)’dx} = \frac{x}{{\ln x}} + C.$
2. Ta có: $\frac{{x{e^x} + 1}}{{{{(x + {e^x})}^2}}}$ $ = – \frac{{(x + 1)'(x + {e^x}) – (x + {e^x})'(x + 1)}}{{{{(x + {e^x})}^2}}}$ $ = – \left( {\frac{{x + 1}}{{x + {e^x}}}} \right)’.$
Suy ra $J = – \frac{{x + 1}}{{x + {e^x}}} + C.$





Nguồn: toanmath.com

Đăng nhận xét

About the Author

"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.