Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng

Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng

Bài tập vận dụng!

1. Vị trí tương đối giữa hai đường thẳng

Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\) . Ta có:

+) \(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)

+) \(d//d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \)  cùng phương nhưng \(\overrightarrow u ,\overrightarrow {MM'} \) không cùng phương \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] \ne \overrightarrow 0 \end{array} \right.\)

+) \(d\) cắt \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \) không cùng phương và \(\overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'}  = 0\end{array} \right.\)

+) \(d\) chéo \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \)  không đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'}  \ne 0\)

Ngoài ra, ta có thể giải hệ phương trình của hai đường thẳng để xét vị trí tương đối của hai đường thẳng:

+) Nếu hệ có nghiệm duy nhất thì \(d\) cắt \(d'\).

+) Nếu hệ vô số nghiệm thì \(d \equiv d'\).

+) Nếu hệ vô nghiệm thì:

\(d//d'\)  nếu \(\overrightarrow u  = k\overrightarrow {u'} \) hay \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương.

\(d\) chéo \(d'\) nếu \(\overrightarrow u  \ne k\overrightarrow {u'} \) hay \(\overrightarrow u ,\overrightarrow {u'} \) không cùng phương.

2. Khoảng cách và góc

a) Khoảng cách từ điểm \(A\) đến đường thẳng \(d'\)

  • [message]
    • ##check##Nhận xét:

      • \(d\left( {A,d'} \right) = \dfrac{{{S_{ANN'M'}}}}{{AN}} = \dfrac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)

b) Khoảng cách giữa hai đường thẳng:

  • [message]
    • ##check##Nhận xét:

      • \(d\left( {\Delta ,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)

c) Góc giữa hai đường thẳng có các VTCP lần lượt là: \(\overrightarrow u ,\overrightarrow {u'} \): 

  • [message]
    • ##check##Nhận xét:

      • $\cos \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right| = \dfrac{{\left| {\overrightarrow u .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow {u'} } \right|}}$



Nguồn: vungoi

Đăng nhận xét

About the Author

"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.