Lý thuyết tích phân

Tích phân - Khái niệm và tính chất

Bài tập vận dụng!

1. Khái niệm tích phân

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right],F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\). Hiệu \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân của \(f\) từ \(a\) đến \(b\). Kí hiệu:

  • [message]
    • ##check##Nhận xét:

      • $I = \int\limits_a^b {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)$

2. Tính chất tích phân

Giả sử các hàm số \(f,g\) liên tục trên \(\left[ {a;b} \right],c\) là điểm bất kì thuộc \(\left[ {a;b} \right]\). Khi đó ta có:

a) \(\int\limits_a^a {f\left( x \right)dx}  = 0\)

b) \(\int\limits_a^b {f\left( x \right)dx}  =  - \int\limits_b^a {f\left( x \right)dx} \)

c) \(\int\limits_a^b {k.f\left( x \right)dx}  = k.\int\limits_a^b {f\left( x \right)dx} \)

d) \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^b {f\left( t \right)dt} \)

e) \(\int\limits_a^b {f\left( x \right)dx} + \int\limits_b^c {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} ;\) \(\forall b \in \left[ {a;c} \right]\)

f) \(\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} \) \(= \int\limits_a^b {f\left( x \right)dx} \pm \int\limits_a^b {g\left( x \right)dx} \)

g) Nếu \(f\left( x \right) \ge 0\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge 0\)

h) Nếu \(f\left( x \right) \ge g\left( x \right)\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx}  \ge \int\limits_a^b {g\left( x \right)dx} \).



Nguồn: vungoi

About the author

Nguyễn Minh Phương
"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"

Post a Comment