Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Lý thuyết tích có hướng và ứng dụng toán 12

Tích có hướng và ứng dụng

Bài tập vận dụng!

1. Tích có hướng của hai véc tơ

- Định nghĩa: Cho các véc tơ \(\overrightarrow {{u_1}}  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}}  = \left( {{x_2};{y_2};{z_2}} \right)\). Tích có hướng của hai véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) là véc tơ \(\overrightarrow u \), kí hiệu  \(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) hoặc $\overrightarrow u = \overrightarrow {{u_1}} \wedge \overrightarrow {{u_2}} $ và được xác định bằng tọa độ như sau:

  • [message]
    • ##check##Nhận xét:

      • \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] =\) \( \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}{y_1}\\{y_2}\end{array}&\begin{array}{l}{z_1}\\{z_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{z_1}\\{z_2}\end{array}&\begin{array}{l}{x_1}\\{x_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{x_1}\\{x_2}\end{array}&\begin{array}{l}{y_1}\\{y_2}\end{array}\end{array}} \right|} \right) =\) \( \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\)

Véc tơ \(\overrightarrow u \) vuông góc với cả hai véc tơ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \)

- Tính chất:

+) \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] =  - \left[ {\overrightarrow {{u_2}} ;\overrightarrow {{u_1}} } \right]\)

+) \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \overrightarrow 0  \Leftrightarrow \overrightarrow {{u_1}} \) cùng phương \(\overrightarrow {{u_2}} \)

+) \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] \bot \overrightarrow {{u_1}} ;\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] \bot \overrightarrow {{u_2}} \)

+) \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}}  = 0 \Leftrightarrow \) ba véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \)  đồng phẳng.

+) \(\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right| = \left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\)

2. Ứng dụng tích có hướng

- Diện tích tam giác:

  • [message]
    • ##check##Nhận xét:

      • \({S_{ABC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\)

- Diện tích hình bình hành:

  • [message]
    • ##check##Nhận xét:

      • \({S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right| = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\)

- Thể tích tứ diện:

  • [message]
    • ##check##Nhận xét:

      • \({V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)

- Thể tích khối hộp:

  • [message]
    • ##check##Nhận xét:

      • \({V_{ABCD.A'B'C'D'}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right|\)

Chú ý: Khi thực hành tính toán, các em có thể tính tích có hướng ở ngoài nháp như sau:

+B1: Viết tọa độ mỗi véc tơ hai lần liền nhau, các tọa độ tương ứng của hai véc tơ thẳng cột.

\(\begin{array}{*{20}{r}}{{x_1}}&{{y_1}}&{{z_1}}&{{x_1}}&{{y_1}}&{{z_1}}\\{{x_2}}&{{y_2}}&{{z_2}}&{{x_2}}&{{y_2}}&{{z_2}}\end{array}\)

+ B2: Xóa bỏ hai cột ngoài cùng.

+ B3: Tính toán theo quy luật: Nhân chéo rồi trừ.

Ví dụ: Cho hai véc tơ \(\overrightarrow u  = \left( {1;5;3} \right)\) và \(\overrightarrow v  = \left( {2; - 1;0} \right)\). Tính tích có hướng của hai véc tơ trên.

Giải:

Ta sẽ sử dụng phương pháp thực hành ở trên như sau: (chỉ viết ngoài nháp)

Vậy \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {3;6; - 11} \right)\).



Nguồn: vungoi

Đăng nhận xét

About the Author

Ngày hôm nay cho tôi buồn một lúc
Sau nhiều năm bươn trải kiếp con người
Cố gượng cười mà lòng có thảnh thơi
Thèm được khóc như cái thời nhỏ dại
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.