Lý thuyết ôn tập chương Số phức toán 12

Ôn tập chương IV

Bài tập vận dụng!

1. Khái niệm số phức

+) Tập hợp số phức: $\mathbb{C}$

+) Số phức (dạng đại số) : $z = a + bi$ ($a,b \in \mathbb{R},a$ là phần thực, $b$ là phần ảo, $i$ là đơn vị ảo, ${i^2} = -1$)

+) $z$ là số thực $ \Leftrightarrow $ phần ảo của $z$ bằng $0\left( {b = 0} \right)$

+) $z$ là thuần ảo \( \Leftrightarrow \) phần thực của $z$ bằng $0\left( {a = 0} \right)$

Số $0$ vừa là số thực vừa là số ảo.

+) Hai số phức bằng nhau: $a + bi = a' + b'i \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right., (a,b,a',b' \in R)$

Chú ý: \({i^{4k}} = 1;\,\,\,{i^{4k + 1}} = i;\,\,\,\,{i^{4k + 2}} =  - 1;\,\,\,\,{i^{4k + 3}} =  - i\)

2. Biểu diễn hình học

Số phức $z = a + bi\left( {a,b \in \mathbb{R}} \right)$ được biểu diễn bởi điểm $M\left( {a;b} \right)$ hay bởi $\overrightarrow u  = (a;\;b)$ trong $mp\left( {Oxy} \right)$ (mp phức)

3. Cộng và trừ số phức

+) $\left( {a + bi} \right) + \left( {a' + b'i} \right) = \left( {a + a'} \right) + \left( {b + b'} \right)i$

+) $\left( {a + bi} \right) - \left( {a' + b'i} \right) = \left( {a - a'} \right) + \left( {b - b'} \right)i$

+) Số đối của $z = a + bi$ là $ - z =  - a - bi$

+) $\vec u$ biểu diễn $z,\overrightarrow {u'} $ biểu diễn $z'$ thì $\overrightarrow u  + \overrightarrow {u'} $ biểu diễn $z + z'$ và $\overrightarrow u  - \overrightarrow {u'} $ biểu diễn $z - z'$

4. Nhân hai số phức

+) $\left( {a + bi} \right)\left( {a' + b'i} \right) = \;\left( {aa'-bb'} \right) + \left( {ab' + ba'} \right)i$

+) \(k(a + bi) = ka + kbi\,\,(k \in R)\)

5. Số phức liên hợp

Số phức liên hợp của số phức $z = a + bi$ là $\bar z = a - bi$

+) $\overline {\overline z }  = z\;;\overline {z \pm z'}  = \overline z  \pm \overline {z'} \;;$ $\overline {z.z'}  = \overline z .\overline {z'} ;\overline {\left( {\dfrac{{{z_1}}}{{{z_2}}}} \right)}  = \dfrac{{{{\bar z}_1}}}{{{{\bar z}_2}}};z.\bar z = {a^2} + {b^2}$

+) $z$ là số thực $ \Leftrightarrow z = \overline z $; $z$ là số ảo $ \Leftrightarrow z =  - \overline z $

6. Môđun của số phức

Cho $z = a + bi$

+) $\left| z \right| = \sqrt {{a^2} + {b^2}}  = \sqrt {z\bar z}  = \left| {\overrightarrow {OM} } \right|$

+) $\left| z \right| \ge 0,\;\forall z \in C, \left| z \right| = 0 \Leftrightarrow z = 0$

+) $\left| {z.z'} \right| = \left| z \right|.\left| {z'} \right|$

+) \(\left| {\dfrac{z}{{z'}}} \right| = \dfrac{{\left| z \right|}}{{\left| {z'} \right|}}\)

+) $\left| {\left| z \right| - \left| {z'} \right|} \right| \le \left| {z \pm z'} \right| \le \left| z \right| + \left| {z'} \right|$

7. Chia hai số phức

+) Chia hai số phức: $\dfrac{{{{a + bi}}}}{{{{a' + b'i}}}} = \dfrac{{{{aa' - bb'}}}}{{a{'^2} + b{'^2}}} + \dfrac{{ab' + a'b}}{{a{'^2} + b{'^2}}}i$

+) ${z^{ - 1}} = \dfrac{1}{{{{\left| z \right|}^2}}}\bar z,(z \ne 0)$

+) $\dfrac{{z'}}{z} = z'{z^{ - 1}} = \dfrac{{z'.\bar z}}{{{{\left| z \right|}^2}}} = \dfrac{{z'.\bar z}}{{z.\bar z}}$

+) $\dfrac{{z'}}{z} = w \Leftrightarrow z' = wz$

8. Căn bậc hai của số phức

+) $z = x + yi$  là căn bậc hai của số phức  \(w = a + bi\) $ \Leftrightarrow {z^2} = w$ $ \Leftrightarrow \left\{ \begin{array}{c}{x^2} - {y^2} = a\\2xy = b\end{array} \right.$

+) $w = 0$ có đúng $1$ căn bậc hai là $z{\rm{ }} = {\rm{ }}0$

+) $w \ne 0$ có đúng hai căn bậc hai đối nhau

+) Hai căn bậc hai của số thực $a > 0$ là $ \pm \sqrt a $

+) Hai căn bậc hai của số thực $a < 0$ là  $ \pm \sqrt { - a} .i$

9. Phương trình bậc hai với hệ số phức

Cho phương trình $A{z^2} + Bz + C = 0{\rm{ }}\left( * \right)$($A,B,C$ là các số phức cho trước, $A \ne 0$)

$\Delta  = {B^2} - 4AC$

+) $\Delta  \ne 0$: $\left( * \right)$ có hai nghiệm phân biệt ${z_{1,2}} = \dfrac{{ - B \pm \delta }}{{2A}}$, ($\delta $ là $1$ căn bậc hai của $\Delta $)

+) $\Delta  = 0$: $\left( * \right)$ có $1$ nghiệm kép: ${z_1} = {z_2} =  - \dfrac{B}{{2A}}$

Chú ý: Nếu ${z_0} \in \mathbb{C}$ là một nghiệm của $\left( * \right)$ thì \(\overline {{z_0}} \) cũng là một nghiệm của $\left( * \right)$

10. Dạng lượng giác của số phức (dành cho chương trình nâng cao)

a) Acgumen của số phức ${\bf{z}} \ne {\bf{0}}$

Cho số phức $z \ne 0.$  Gọi $M$ là điểm biểu diễn số $z.$ Số đo (radian) của mỗi góc lượng giác tia đầu $Ox,$  tia cuối $OM$ được gọi là một acgumen của $z.$  Nếu $\varphi $ là một acgumen của $z$ thì mọi acgumen của $z$ có dạng $\varphi  + {\rm{ }}k2\pi \left( {k \in \mathbb{Z}} \right)$

b) Dạng lượng giác của số phức

Dạng $z = r\left( {\cos \varphi  + {\rm{ }}i\sin \varphi } \right)\;\left( {r > 0} \right)$ là dạng lượng giác của $z = a + bi\left( {a,b \in R} \right)\left( {z \ne 0} \right)$

\( \Leftrightarrow \left\{ \begin{array}{l}r = \sqrt {{a^2} + {b^2}} \\c{\rm{os}}\varphi  = \dfrac{a}{r}\\\sin \varphi  = \dfrac{b}{r}\end{array} \right.\) ($\varphi $ là acgumen của $z,\varphi  = \left( {Ox,OM} \right)$)

c) Nhân, chia số phức dưới dạng lượng giác

Nếu $z = r\left( {\cos \varphi  + {\rm{ }}i\sin \varphi } \right),$$\;z' = {\rm{ }}r'\left( {\cos \varphi '{\rm{ }} + {\rm{ }}i\sin \varphi '} \right)$ thì:

$z.z' = {\rm{ }}rr'\left[ {\cos (\varphi  + \varphi '){\rm{ }} + {\rm{ }}i\sin (\varphi  + \varphi ')} \right]$

\(\dfrac{{z}}{{{z'}}} = \dfrac{r}{{r'}}\left[ {c{\rm{os}}(\varphi  - \varphi ') + {\rm{i}}\sin (\varphi  - \varphi ')} \right]\).

d) Công thức Moa-vrơ

Với $n$ là số nguyên, $n \ge 1$ thì: \({\left[ {r(c{\rm{os}}\varphi  + {\rm{i}}\sin \varphi )} \right]^n} = {r^n}(\cos n\varphi  + {\rm{i}}\sin n\varphi )\)

Khi $r = 1,$ ta được : \({(c{\rm{os}}\varphi  + {\rm{i}}\sin \varphi )^n} = (\cos n\varphi  + {\rm{i}}\sin n\varphi )\)

e) Căn bậc hai của số phức dưới dạng lượng giác

Các căn bậc hai của số phức  $z{\rm{ }} = {\rm{ }}r(\cos \varphi  + {\rm{ }}i\sin \varphi )\;\;\left( {r > 0} \right)$ là : \(\sqrt r \left( {c{\rm{os}}\dfrac{\varphi }{2} + {\rm{i}}\sin \dfrac{\varphi }{2}} \right)\) và \( - \sqrt r \left( {c{\rm{os}}\dfrac{\varphi }{2} + {\rm{i}}\sin \dfrac{\varphi }{2}} \right) = \sqrt r \left[ {c{\rm{os}}\left( {\dfrac{\varphi }{2} + \pi } \right) + {\rm{i}}\sin \left( {\dfrac{\varphi }{2} + \pi } \right)} \right]\)



Nguồn: vungoi

About the author

Nguyễn Minh Phương
"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"

Đăng nhận xét