Tổng hợp key Windows 8, Windows 10, Windows 11, Office 2019 ProPlus, Office 2016 ProPlus, Office 2013 ProPlus tại đây!

Lý thuyết hệ tọa độ trong không gian – tọa độ điểm toán 12

Hệ tọa độ trong không gian – Tọa độ điểm

Bài tập vận dụng!

1. Hệ tọa độ trong không gian

- Hệ trục tọa độ \(Oxyz\) với các véc tơ đơn vị trên các trục \(Ox,Oy,Oz\) theo thứ tự là \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)  với:

\(\left| {\overrightarrow i } \right| = \left| {\overrightarrow j } \right| = \left| {\overrightarrow k } \right| = 1\) hoặc \({\overrightarrow i ^2} = {\overrightarrow j ^2} = {\overrightarrow k ^2} = 1\) và \(\overrightarrow i .\overrightarrow j  = \overrightarrow j .\overrightarrow k  = \overrightarrow k .\overrightarrow i  = 0\)

- Các trục tọa độ \(Ox\): trục hoành; \(Oy\): trục tung; \(Oz\): trục cao.

- Các mặt phẳng tọa độ: \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Ozx} \right)\).

2. Tọa độ điểm trong không gian

- Điểm \(M\left( {x;y;z} \right) \Leftrightarrow \overrightarrow {OM}  = x.\overrightarrow i  + y.\overrightarrow j  + z.\overrightarrow k \)

- Nếu \(I;J;K\) là hình chiếu của \(M\) lên các trục \(Ox,Oy,Oz\) thì \(I\left( {x;0;0} \right),J\left( {0;y;0} \right),K\left( {0;0;z} \right),\) \(x = \overline {OI} ,y = \overline {OJ} ,z = \overline {OK} \).

- Nếu \(D;E;F\) là hình chiếu của \(M\) lên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Ozx} \right)\) thì \(D\left( {x;y;0} \right),E\left( {0;y;z} \right),F\left( {x;0;z} \right)\).

  • [message]
    • ##check##Nhận xét:

      • Khi chiếu một điểm lên các trục tọa độ hoặc mặt phẳng tọa độ thì ta có thể nhớ theo quy tắc: “Chiếu lên cái gì thì giữ nguyên cái đó, còn lại cho bằng \(0\)”.

- Tọa độ trung điểm đoạn thẳng \(AB\) là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)

- Tọa độ trọng tâm tam giác \(ABC\) là \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)

- Tọa độ trọng tâm tứ diện \(ABCD\) là \(( {\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}}) \)



Nguồn: vungoi

Đăng nhận xét

About the Author

Ngày hôm nay cho tôi buồn một lúc
Sau nhiều năm bươn trải kiếp con người
Cố gượng cười mà lòng có thảnh thơi
Thèm được khóc như cái thời nhỏ dại
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.